Interspecies selective motoneuron projection patterns in chick-quail chimeras.
نویسندگان
چکیده
During normal development chick motoneurons have been shown to project selectively to appropriate muscles by responding to a series of cues, both specific and nonspecific, within the limb. We tested the ability of motoneurons from another avian species, the Japanese quail, to respond to these cues by transplanting chick limb buds onto quail embryos and quail limb buds onto chick embryos between stages 17 1/2 and 19. Feulgen staining, which distinguishes chick from quail cells on the basis of nuclear chromatin, revealed that all limb tissue, including muscle, was of donor origin, indicating that the migration of somite-derived muscle precursor cells had been completed by the time of transplantation. Normal quail motoneuron pools for most muscles were located in the same relative positions as homologous chick pools. In chick-quail chimeras we found that the motoneuron pools of one species selectively innervated the homologous muscles in the limb of opposite species with considerable precision. This was determined by defining the segmental innervation pattern of the muscles electrophysiologically and by retrogradely labeling motoneuron pools with HRP. Selective innervation was confirmed by using the functional activation patterns of the motoneuron pools as an additional means of identifying motoneurons. We conclude that any limb-derived cues required by motoneurons to project to their appropriate muscles must be similar in chick and quail and that the growth cones of both species must have similar detector systems for responding to these cues. Only 7 spinal segments were found to innervate the quail limb (versus 8 for the chick), resulting in an anterior shift in the spinal segments innervating several posterior quail muscles.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Cell death of lumbosacral motoneurons in chick, quail, and chick-quail chimera embryos: a test of the quantitative matching hypothesis of neuronal cell death.
The quantitative matching hypothesis of neuronal cell death was tested for the chick hindlimb by determining the relationship between myotube number at the onset of motoneuron cell death and the number of motoneurons that survive in chicks, quail, and chick-quail chimeras. Hindlimb buds, which differ in size between the 2 species, were exchanged at stages 16 1/2-19, myosin ATPase-stained myotub...
متن کاملThe pattern of avian intramuscular nerve branching is determined by the innervating motoneuron and its level of polysialic acid.
Most skeletal muscles are composed of a heterogeneous population of fast and slow muscle fibers that are selectively innervated during development by fast and slow motoneurons, respectively. It is well recognized that, in both birds and mammals, fast and slow motoneurons have substantially different intramuscular branching patterns, a difference critical for proper motor function. However, the ...
متن کاملImplants of quail thymic epithelium generate permanent tolerance in embryonically constructed quail/chick chimeras.
In situ implantation of a quail wing bud into a chick embryo at 4 days of incubation (E4) regularly results in the normal development of the implant followed by its acute rejection starting within two weeks post-hatching. If the epithelial thymic rudiments of the quail donor are implanted into the branchial arch area of the chick recipient after partial removal of its own thymic primordia, a ch...
متن کاملDistribution analysis of transferred donor cells in avian blastodermal chimeras.
Blastodermal chimeras were constructed by transferring quail cells to chick blastoderm. Contribution of donor cells to host were histologically analyzed utilizing an in situ cell marker. Of the embryos produced by injection of stage XI-XIII quail cells into stage XI-2 chick blastoderm, more than 50 percent were definite chimeras. The restriction on the spatial arrangement of donor cells was ind...
متن کاملExperimental study of early olfactory neuron differentiation and nerve formation using quail-chick chimeras.
For the formation of a functional olfactory system, the key processes are neuronal differentiation, including the expression of one or the other olfactory receptors, the correct formation of the nerve and organization of periphero-central connections. These processes take place during embryonic development starting from early stages. Consequently, avian embryos afford an attractive model to stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 6 10 شماره
صفحات -
تاریخ انتشار 1986